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In order to apply the molecular dynamics (MD) method to simulate modulated

phases in organic materials, a compensating external pressure tensor is proposed

to compensate for the de®ciencies of the force ®eld applied in the simulation.

MD can well reproduce modulated phases that have been measured by

diffraction. Mechanisms of incommensurate modulation are revealed from the

simulations. Details of the structures relating to the origins and mechanisms

giving rise to the formation of modulated phases are presented.

1. Introduction

Since its introduction in the 1950s (Alder & Wainwright, 1957)

and 1960s (Gibson et al., 1960; Rahman, 1964), molecular

dynamics (MD) has become not only a powerful method to

understand and interpret experimental results of solids, liquids

and gases at the microscopic level, but also for exploring

regions that are not experimentally accessible or too costly to

perform (Berendsen, 1986; Allen & Tildesley, 1987; Hoover,

1991; Rapaport, 1995). With the development of modern high-

performance computers (HPC), this method has been exten-

sively used in the past few decades in physics, chemistry and

biology (Ciccotti & Hoover, 1986; Catlow et al., 1990; Allen &

Tildesley, 1993; Karplus & McCammon, 2002; Banci, 2003).

The principle of MD simulation is to calculate the forces

acting on the atoms in a molecular or other system and analyze

their motion. If all details on the motion of the individual

atoms in the system are known, it is possible to deduce the

bulk properties of the material. These properties include,

among others, the structure (e.g. crystal structure, predicted

X-ray and neutron diffraction patterns), thermodynamics (e.g.

energy, temperature, pressure) and transport properties (e.g.

thermal conductivity, viscosity, diffusion). In addition, mol-

ecular dynamics can be used to investigate the detailed

atomistic mechanisms underlying these properties and

compare them with experiment or theory. It is a valuable

bridge between experiment and theory.

Incommensurate modulated structures belong to the class

of aperiodic crystals (de Wolff, 1974, 1977; Janner & Janssen,

1977; Janssen & Janner, 1987). These materials are char-

acterized by a well de®ned long-range order but lack three-

dimensional periodicity. Their diffraction patterns contain

sharp peaks that cannot be indexed with three integers. It is

however possible to increase the number of integers in order

to completely index a diffraction pattern given a suitable

choice of basis vectors (de Wolff, 1974). Their crystal struc-

tures cannot be described on the basis of a unit cell and lattice

periodicity. Instead, a superspace description of the structure

must be used to analyze incommensurately modulated struc-

tures (Janner & Janssen, 1977, 1979, 1980; Janssen & Janner,

1987). The origin of incommensuration in crystals has been

studied in the past using various theoretical models (Elliott,

1961; Selke & Fisher, 1979; Janssen & Tjon, 1982; Janssen &

Janner, 1987; Pimenta & Licinio, 1994; Luk'yanchuk et al.,

1994; Neubert et al., 1998).

The technique of molecular dynamics simulation has been

used to simulate incommensurate crystals. Parlinski &

Chapuis have simulated simple models of incommensurate

structures and their transitions between commensurate or

incommensurate phases (Parlinski & Chapuis, 1993, 1994).

Their model consisted of a very large three-dimensional array

of a single point atom placed on a hexagonal lattice. Each

atom could only move along the direction parallel to the

hexagonal axis. Starting from a potential with harmonic and

anharmonic terms, many examples of transition types

observed experimentally could be simulated. The principal

merits of these studies were that the precise nucleation

processes involved in the transition mechanisms could be

identi®ed. The in¯uence of temperature or pressure on the

phase-transition mechanisms could also be studied which

allowed the establishment of complete phase diagrams.

2. MD method and potentials

2.1. MD method

Molecular dynamics (MD) is a simulation technique, which

gives the time evolution of a set of interacting atoms by

integrating their equations of motion. Newton's equations of

motion provide the basis for molecular dynamics. Each atom i

in a molecular system is subject to Newton's law:

Fi � mi@
2ri=@t

2:

Here mi is the atom mass, Fi is the acting force from other

atoms and ri is the position of atom i at time t. The time

evolution of the atom positions and velocities can be deter-



mined from this equation provided that initial values are

given.

In the absence of external ®elds, the force Fi can be assumed

to be derivable from a potential of interaction E(r1,r2, . . . ,rn)

for each degree of freedom. The force will then be

Fi � ÿ@
@E�r1; r2; . . . ; rn�

@ri

:

The equations of motion can be solved analytically only in a

few simple cases. When the system involves a large number of

complex variables, a computer has to be employed to solve

these equations numerically. The molecular dynamics method

solves Newton's equations of motion for atoms by taking a

small time step and using approximate numerical methods to

predict the new atom positions and velocities at the end of the

step.

The most popular integration algorithm used in molecular

dynamics is the Verlet algorithm, which possesses many

advantages. Among others, we can mention accuracy, stability,

simplicity, speed and economy (Verlet, 1967, 1968). The Verlet

leapfrog algorithm (Feynman et al., 1963) is a widely used

version that needs to store only one set of positions and one

set of velocities for the atoms. The coding is also simpler to

implement.

Vn�1=2 � Vnÿ1=2 � �fn=m��t �O��t3�
rn�1 � rn � Vn�1=2�t �O��t4�
Vn � 1

2 �Vn�1=2 � Vnÿ1=2� �O��t2�
:

Here, Vn and fn are the velocity and the force acting on an

atom at time step n. The upper limit of the time step used to

solve the equation of motion is determined by the highest

frequency motions such as the stretching motions of CÐH,

OÐH and NÐH bonds in the system. In our simulations, the

time step is set to about 1 fs.

2.2. Potentials (force field) and parameters

The forces in the equation of motion are calculated from

potentials (or force ®elds). The commonly used force ®elds for

describing molecules include a combination of internal coor-

dinates and terms (bond distances, bond angles, torsions etc.)

to describe the bonding part of the potential energy, and non-

bonding terms to describe the van der Waals and electrostatic

interactions between atoms (MSI, 1998). The goal of a force

®eld is to describe entire classes of molecules with reasonable

accuracy. From the empirical data based on a small set of

molecules, it is extended to a larger set of related molecules

and structures.

The potential energy of an organic system can be expressed

as a sum of valence and non-bonding interactions.

Etotal � Evalence � Enonbond:

The energy of valence interactions includes bond stretching,

valence-angle bending, dihedral-angle torsion and out-of-

plane interactions.

Evalence � Ebond � Eangle � Etorsion � Eoop:

With the bond-stretching energy, atom pairs forming a

chemical bond can be kept apart at a ®xed distance by a rigid

constraint

jrijj2 ÿ b2
0 � 0

or, alternatively, quite close to it by a harmonic spring

potential

Ebond�jrijj� � 1
2 kb�jrij ÿ b0j�2:

The bond angles are maintained close to their equilibrium

values. The angle bending potential has the following

expression:

Eangle��� � 1
2 k��cos � ÿ cos �0�2:

The bond angle is de®ned by the positions of three contiguous

atoms, i.e. {i, j, k} with i bonded to j and j bonded to k (i 6� k),

cos � � �rij � rkj��jrijjjrkjj�:
Similarly, given four contiguous atoms in a molecule, torsion

potentials are used to represent restricted rotation around the

dihedral angles:

Etorsion��� �
P6

m�0

Cm cosm �;

where

cos � � ÿ �rij � rjk� � �rjk � rkl�
jrij � rjkjjrjk � rklj

:

The motion of central trivalent atoms in planar groups is

restricted using an out-of-plane potential of the form

Eoop�s� � 1
2 koops2

with

s � rji

�rjk � rjl�
jrjk � rjlj

:

The energy of interactions between non-bonded atoms

accounts for van der Waals and electrostatic energies.

Enonbond � EvdW � ECoulomb:

In our MD simulations, the van der Waals energy is the

Lennard-Jones (LJ) 9-6 potential

ELJ�jrijj� � Aijjrijjÿ9 ÿ Bijjrijjÿ6

and the Coulombic potential satis®es the following expression:

ECoulomb�jrijj� � qiqj=�4�"0jrijj�:
The three dimensions (3D) parallel MD program ddgmq

(Brown et al., 1997) which was principally designed for the

simulation of dense materials is used in our simulations, with

periodic boundary conditions. This code is particularly

adapted for parallel HPC. The shape and size of the primary

MD box is de®ned by a 3 � 3 matrix H made up from the

three basis (column) vectors {a, b, c} which allows for non-

orthogonal cells. All the high-frequency modes associated with

H atoms in CH3 and CH2 groups can be removed using special

constraints (Hammonds & Ryckaert, 1991).

phase transitions
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After testing several force ®elds, parameters of the consis-

tent force ®eld (CFF) (Maple et al., 1994; Hwang et al., 1994)

were taken for all our MD simulations. In CFF, a large number

of force-®eld parameters are accurately determined by ®tting

the energy expression to quantum observables (based on

quantum-mechanics calculations and molecular simulations).

Non-bonded parameters are calculated by ®tting to experi-

mental crystal lattice constants and sublimation energies

(Hagler et al., 1979a,b). The applied parameters are especially

adapted for acetals, acids, alcohols, alkanes, alkenes, amides,

amines, aromatics, ethers and esters (Maple et al., 1994; Hwang

et al., 1994). This force ®eld has been used to successfully

predict lattice parameters, r.m.s. atomic coordinates and

sublimation energies for crystals.

The partial charges assigned automatically by the selected

force ®eld (CFF) are identical for the same type of atom

independent of their neighbouring atoms. This is not suf®cient

for our simulation. In order to improve these parameters, we

used the charge equilibration approach implemented in the

Cerius2 package (RappeÂ & Goddard, 1991; Cerius2, 1997),

which gives more appropriate values for the molecular

geometry and the atomic electronegativities. This approach

allows the charges to respond to changes in the environment.

The resulting values are in good agreement with the experi-

mental dipole moments and with the result from the electro-

static potentials of accurate ab initio calculations (RappeÂ &

Goddard, 1991).

Using as initial model the structure re®ned from diffraction

data and random velocities assigned for the temperature, the

MD system can be simulated either at constant-volume

constant-temperature (NVT) conditions (Berendsen et al.,

1984) or alternatively a required pressure tensor can be

applied to give NPT dynamics (Brown & Clarke, 1991). In this

case, differences between the internally measured pressure

tensor and the externally required pressure tensor may lead to

changes in both the box size and shape.

After the MD system reaches the required state, many

physical properties that usually are a function of the atom

coordinates and velocities can be obtained from the simula-

tion results. In particular, quantities such as temperature,

energies, density, pressure, mean square displacement, pair

distribution function and diffraction patterns can be derived.

The simulation result also provides structural details for the

speci®c state.

3. Challenge from diffraction results

Nowadays, the accuracy of diffraction measurements can

reach 0.01 AÊ for lattice constants. Usually, the lattice constants

change about ~1% with a temperature change of hundreds of

kelvin. Most phase transitions of organic crystals occur within

10 K. If MD simulation is adopted to reproduce these phase

transitions, the accuracy of the simulation should be suf®-

ciently high to distinguish these phases.

However, owing to the application of generic potentials (or

force ®eld), the accuracy of MD simulation is usually worse

than 5% for lattice parameters (Pan et al., 2002). It is thus

almost impossible to reproduce the experimental structure

with the same accuracy. The same problem also exists for

reproducing phase transitions in crystals that have been

determined experimentally.

In order to solve this problem, the ®rst step is to reproduce

the same structure as measured experimentally. An external

pressure tensor ®eld is introduced to compensate for the

de®ciencies of the selected force ®eld (Pan et al., 2003). This

guarantees that MD simulation can well reproduce the

experimental measurements. This can be justi®ed with the

following argument. The equation of state of an N-atom

system can be represented by a virial expression (Haile, 1992):

PV �PN
i�1

mi_ri_ri �
Pall force on i

�

r
���
i f
���
i :

With bonding and non-bonding interactions used in potentials,

the pressure tensor can be represented as (see Brown &

Neyertz, 1995)

P � 1

V

XN

i�1

mi_ri_ri

( )
� Pbond � Pnonbond:

If in this equation the assigned pressure is the normal pres-

sure, the volume of the system does not usually agree with the

experimental results. A compensating external pressure tensor

is therefore needed to correct the de®ciencies in the applied

force ®eld in order to reproduce the experimental lattice

parameters in the ®xed-temperature MD simulation (Pan et

al., 2003). With the compensating external pressure tensor

applied, the volume can be written as follows.

V � Vexp �
PN

i�1 mi_ri_ri

P� Pcompen ÿ Pbond ÿ Pnonbond

The new equation of state becomes
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Figure 1
Commensurate crystal structure approximation of hexamethylenetetra-
mine suberate.



P� Pcompen �
1

V

XN

i�1

mi_ri_ri

( )
� Pbond � Pnonbond:

In MD simulations, this compensating pressure tensor can be

obtained by running NVT simulations to equilibrium from the

re®ned structure. A NPT simulation is then carried out to

adjust the system to the required state by applying the

compensating pressure tensor. The MD simulations can thus

well reproduce the experimental structures at starting

temperatures (Pan et al., 2002, 2003; Pan, Birkedal et al., 2004;

Pan, Brown et al., 2004a). This gives also the possibility to

reproduce the observed phase transition occurring not too far

from the starting temperature.

4. MD simulations of the modulated phase in
hexamethylenetetramine suberate

The organic compound hexamine suberate is a layer structure

with alternating sheets of hexamine and suberic acid linked by

hydrogen bonds between N and O atoms (Fig. 1). At room

temperature, hexamine suberate is strongly modulated as

witnessed by satellite re¯ections up to sixth order. The

incommensurate modulation is very stable between 120 and

300 K (Gaillard et al., 1996, 1998). The incommensurate

structure has been re®ned in superspace. Displacive atomic

modulations including up to eight harmonics lead to satisfac-

tory models. The analysis of the re®nements indicates that, in a

layer, the zigzag planes of the acid chains take essentially two

orientations, forming an angle of approximately 60�.

4.1. Simulation

The molecular dynamics method is used to investigate the

mechanism of commensurate-to-incommensurate phase tran-

sition. The starting model with dimensions 180 � 50 � 180 AÊ

was a commensurate approximation of the experimental

structure determined at 295 K. The simulation was ®rst carried

out under NVT conditions keeping the experimental shape

and size of the model. The simulation was performed to reach

equilibrium at that temperature and a compensating pressure

tensor was then obtained as given in Table 1. At the same

temperature, a NPT (constant pressure tensor) simulation was

then performed to equilibrate the system with the compen-

sating pressure tensor. The same pressure tensor was also used

when the system was heated to 580 K and cooled down to

15 K.

The simulation provides the lattice constants and angles for

the different temperatures. Over the whole temperature

range, the lattice constants a, b and c agree well with the

experimental observations. The experimental and simulated

lattice constants and angles are compared at 295 and 123 K.

The close agreement at 295 K is due to the application of the

compensating pressure tensor. When the system is cooled to

123 K, the largest error in the lattice constants is 0.64%.

4.2. Phase transitions

Phase transitions are investigated by checking the physical

properties of the system at different temperatures. In our case,

lattice constants and angles of the simulation, density, mean-

square displacements and torsion angle energy for the whole

temperature range provides the requested information (Pan et

al., 2001, 2002). In the crystalline phase, phase transitions are

found at about 290 and 150 K.

In order to identify the crystalline phases, single-crystal

X-ray diffraction patterns were simulated using the software

DISCUS (Proffen & Neder, 1997). The resulting diffraction

patterns reveal the commensurate, incommensurately modu-

lated and lock-in phases in temperature ranges above 290,

290±150 and below 150 K, respectively. Fig. 2 illustrates the

diffraction patterns at 352, 200 and 141 K representing the

three different phases, respectively. In the 200 K diffraction

patterns, the satellites along the diagonal direction are not

phase transitions
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Table 1
The average compensating pressure tensor components (in 105 Pa)
obtained at 295 K for the hexamethylenetetramine suberate system.

X Y Z

X ÿ2130 0 ÿ1240
Y 0 ÿ1520 0
Z ÿ1240 0 1340

Figure 2
Simulated diffraction patterns at (a) 352 K, (b) 200 K and (c) 141 K.



aligned with the main re¯ections. This indicates the incom-

mensurate character of the structure.

4.3. Mechanism of incommensurate modulation

In the commensurate phase that is stable between 290 and

410 K, the simulated X-ray diffraction pattern exhibits three

satellites between the main re¯ections along c�. A very clear

long-range ordering (l.r.o.) with a fourfold pattern exists in

both HMT and suberic acid layers. The hydrogen bonds

between terminal H atoms of suberic acid and N atoms of

HMT appear in three consecutive rows; they are absent in the

fourth. This absence of hydrogen bonds is the origin of the

periodicity of the phase. The displacement of the HMT layers

is also modulated with the same periodicity. This l.r.o. is illu-

strated in Fig. 3(a) for the XY plane and 3(b) for a layer of

C-atom chains in the suberic acid structure.

At temperatures below 290 K, new satellites appear in the

simulated diffraction pattern. In this temperature range, a new

periodicity with N ' 8 molecules can be clearly observed in

both the suberic acid and HMT layers as presented in Figs.

4(a) and 4(b) at 141 K. In addition, the periodicity obtained in

the commensurate phase still exists in the system. Fig. 4(a)

clearly shows the new periodicity in the orientation of indi-

vidual C-atom chains of suberic acid and modulated dis-

placement of the HMT layer. Fig. 4(b) illustrates the new

periodicity in the suberic acid layers. The simulation result

shows that the origin of the commensurate±incommensurate

phase transition is related to the orientation of the individual

C-atom chains of suberic acid. Fig. 5 shows the distribution of

the orientations of C-atom chains at 295 and 141 K. From 295

to 141 K, a splitting of each single peak is observed in the

orientations of the C-atom chains. This splitting is linked to the

new periodicity which is presented in Fig. 4.

5. MD simulation of bis(4-chlorophenyl) sulfone (BCPS)

The crystal structure of bis(4-chlorophenyl) sulfone (BCPS)

(see Fig. 6) exhibits a continuous structural phase transition

from a normal phase to an incommensurately modulated

phase (IC) occurring at 150 K (Pusiol et al., 1989). The IC

phase is stable from 150 K down to a very low temperature

(4.5 K). It has been extensively studied by different experi-

mental techniques, including X-ray diffraction (Kasano et al.,

1990; ZuÂ nÄ iga et al., 1993), neutron scattering (Ollivier et al.,

1998), NMR (Taye et al., 2002), NQR and Raman spectros-

copy (Schneider et al., 2001; Blinc et al., 2002). From elastic

neutron measurements, high-order satellite re¯ections could

be measured. An increase of their intensities was also

observed on cooling (Etrillard, Even et al., 1993; Etrillard,

Toudic et al., 1993). The microscopic mechanism for the
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Figure 3
Long-range ordering in the commensurate phase at 352 K.

Figure 4
Long-range ordering only found in the incommensurate phase at 141 K.

Figure 5
The distribution of the orientations of C-atom chains at (a) 295 K and (b)
141 K.



incommensurate character of the IC phase was extensively

studied. Pusiol et al. (1989) proposed that the IC phase was

related to the dihedral angle between the two benzene ring

planes. Ishit et al. (1992) suggested that the incommensurate

modulation is linked to the soft mode which shows a signi®-

cant intramolecular twisting of the phenyl rings in the mol-

ecule. X-ray and neutron diffraction have shown that the

wavevector of the incommensurate modulation, q = ÿ0.78b�,
varies smoothly with temperature in the whole IC phase

(Kasano et al., 1990; ZuÂ nÄ iga et al., 1993). The IC modulated

waves were measured and were related to both atomic

displacements and the dihedral and bending angles of the

molecule (ZuÂ nÄ iga et al., 1993). Blinc et al. (2002) used NQR

spin-lattice relaxation to show large-scale ¯uctuations of the

pinned modulation wave instead of small-scale ¯uctuations

(phasons and amplitudons) as the origin of the incommen-

suration modulation.

5.1. Simulation and results

Molecular dynamics simulation of bis(4-chlorophenyl)

sulfone was carried out in order to study the phase transition

and mechanism of an IC modulated structure (Pan, Brown et

al., 2004a,b). The starting model of the simulation was taken

from the experimentally re®ned structure at 90 K (ZuÂ nÄ iga et

al., 1993), with monoclinic symmetry I2=a, a = 20.20, b = 4.910,

c = 12.054 AÊ and � = 90.02�. The size of the simulated system

was 80 � 160 � 100 AÊ with 102400 atoms. The system was ®rst

run to equilibrium under NVT conditions without changing

the lattice parameters. A compensating pressure tensor ®eld

was obtained as shown in Table 2. In a second step, constant

pressure simulations (NPT) were performed in order to vary

the temperature of the system while applying the compen-

sating pressure tensor. The system was heated to 460 K and

then cooled to 17 K.

The temperature behaviour of the a and b lattice constants

are plotted in Fig. 7. The simulated lattice parameters agree

well with the experiment at 90 K and deviate less than 0.5% at

room temperature. The changes in the lattice constants show

roughly the same features as in the experiments (Etrillard,

Even et al., 1993). However, the simulated phase-transition

temperature of 260 K differs from the observed value of 150 K

(Etrillard, Even et al., 1993). This temperature shift is due to

the characteristics of a generic force ®eld.

The structure above 260 K is the normal commensurate

phase. The diffraction pattern of the hk0 plane at 300 K is

represented in Fig. 8. The diffraction patterns show that the

incommensurate phase exists at all temperatures below 260 K.

Fig. 9 illustrates the diffraction pattern at 17 K. In the simu-

phase transitions
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Table 2
The average compensating pressure tensor components (in 105 Pa)
obtained at 90 K for the bis(4-chlorophenyl) sulfone system.

X Y Z

X ÿ1170 20 452
Y 20 ÿ861 ÿ13
Z 452 ÿ13 601

Figure 7
Simulated temperature evolution of lattice constants a and b.

Figure 6
Structure of bis(4-chlorophenyl) sulfone in XZ and XY planes.

Figure 8
Simulated diffraction pattern hk0 at 300 K



lations, the positions of the main re¯ections and all satellites

are in good agreement with the experimental result at 13 K

(Kasano et al., 1990; Etrillard, Even et al., 1993). A more

detailed comparison of the shape and orientation of the main

and ®rst- order satellite re¯ections also shows good agreement

between simulation and experimental data (ZuÂ nÄ iga, 1993). As

in previous re®nements of the atomic modulation, one

modulation vector is supposed to characterize all satellites.

The modulation wavevector could be roughly identi®ed as a� +

0.22b� or ÿ0.78b�, which are the same as the experimentally

measured ones (Kasano et al., 1990; ZuÂ nÄ iga et al., 1993).

5.2. Mechanism of incommensurate modulations

The incommensurate modulation can be identi®ed as

displacive and can be represented with only the centre S atom

instead of the whole molecule. Two components of the

modulated waves are found along b in the IC phase. One is a z

displacement of S atoms along y, as illustrated in Fig. 10(a).

The wavelength of this modulation is about 5.3 molecules. The

phase of this modulation agrees with that of the bending angle

from experiment (ZuÂ nÄ iga et al., 1993). Another modulation

wave, shown in Fig. 10(b), is an x displacement of S along y. Its

wavelength is about 10.6 molecules. The phase of this modu-

lation agrees with that of the dihedral angle from experiment

(ZuÂ nÄ iga et al., 1993). The phases of the two modulated waves

are different.

The detailed analysis of the simulated crystalline structure

allows one to ®nd the origin of the modulation waves. Inter-

molecular interactions are found in the formation of O� � �H
bonds along z and Cl� � �H and Cl� � �Cl bonds along x (see Fig.

6). As a consequence of the O� � �H interactions, we observe a

modulation of the intermolecular distance along y. This

modulation wave result induces a displacement of the mol-

ecule along z by adapting the bending angle between the two

C-atom rings in the same molecule. The x displacement of the

S-atom centre is determined by the distances Cl� � �H, H� � �Cl

and Cl� � �Cl between the ends of neighbouring molecules. In

the IC phase, these distances are modulated along y. The result

of this modulation wave is to vary the displacement of the

molecule along x by rotating the phenyl rings. The wavelength

of this modulation wave component is the same as that of the x

displacement measured at the centre S atoms. This wavelength

is twice that of the modulation wave with displacement along

z. Unfortunately, the re®nement of the structure (ZuÂ nÄ iga et al.,

1993) does not indicate the relation between the two modu-

lation components owing to the constraints assigned to the

second-order harmonics. Our simulation result reveals

however that the two modulation components are related to

the x and z displacements of the molecules. As revealed by the

experimental results (ZuÂ nÄ iga et al., 1993), the changes of

torsion and bending angles of two C-atom rings are roughly
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Figure 9
Simulated diffraction pattern at 17 K.

Figure 10
Modulation waves along the b axis: (a) in the z displacement; (b) in the x
displacement.



similar to the z and x displacements, which con®rm the two

modulation wave components.

6. Conclusions

With the two examples presented above, we have shown that

incommensurate structures can be simulated by a molecular

dynamics technique with generic force ®eld. In addition, we

can also simulate sequences of phase transitions where

commensurate and incommensurate phases can occur. We

have shown that the pressure tensor can be used to adjust the

system in order to reproduce precisely the experimental lattice

constants. This tensor remains unchanged over the tempera-

ture interval of the simulations. Owing to the aperiodic char-

acter of incommensurate structures, the periodic boundary

condition obviously has some effect in the simulation of ®nite

objects. If for example the dimension of the system along the

modulation wave is smaller than its wavelength, the simulation

of course cannot represent the real structure. This effect is

accounted for in the design of the simulation box. Several

multiples of the modulation wavelength are usually in our

simulation system in order to be able to reproduce the

behaviour which is observed experimentally.

There are also a certain number of important points to

consider in order to reproduce the experimental results. In

MD simulations, a physical quantity or structure is determined

only after the system reaches equilibrium. A relaxation time is

needed for a physical quantity to reach its equilibrium value. If

the simulation is initiated from the experimental structure, the

relaxation time can vary from the order of tenths to hundreds

of ps, depending on the system. In the case of phase transi-

tions, the system starts to be unstable owing to heating or

cooling. It then transforms to a new phase, and ®nally reaches

a new equilibrium. In order to reproduce a phase transition in

the MD system, a much longer relaxation time is needed for

the system to complete all the stages. If the relaxation time is

short enough, a well designed simulation is able to reproduce

the phase transition. This means the simulation procedure

should be treated according to the relaxation time of the

studied phenomenon. However, if the relaxation time is much

larger than the overall simulation time, the MD technique will

certainly fail to reproduce the experimental data character-

izing the phase-transition mechanism.
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